## Not run:
# #Simulated Data Example from Aguinis & Culpepper (in press)
# data(simICCdata)
# require(lme4)
#
# #computing icca
# vy = var(simICCdata$Y)
# lmm0 <- lmer(Y ~ (1|l2id),data=simICCdata,REML=F)
# VarCorr(lmm0)$l2id[1,1]/vy
#
# #Estimating random slopes model
# lmm1 <- lmer(Y~I(X1-m_X1)+I(X2-m_X2) +(I(X1-m_X1)+I(X2-m_X2)|l2id),data=simICCdata2,REML=F)
# X = model.matrix(lmm1)
# p=ncol(X)
# T1 = VarCorr(lmm1) $l2id[1:p,1:p]
# #computing iccb
# #Notice '+1' because icc_beta assumes l2ids are from 1 to 30.
# icc_beta(X,simICCdata2$l2id+1,T1,vy)$rho_beta
#
# #Hofmann et al. (2000) Example
# data(Hofmann)
# require(lme4)
#
# #Random-Intercepts Model
# lmmHofmann0 = lmer(helping ~ (1|id),data=Hofmann)
# vy_Hofmann = var(Hofmann[,'helping'])
# #computing icca
# VarCorr(lmmHofmann0)$id[1,1]/vy_Hofmann
#
# #Estimating Group-Mean Centered Random Slopes Model, no level 2 variables
# lmmHofmann1 <- lmer(helping ~ mood_grp_cent + (mood_grp_cent |id),data=Hofmann,REML=F)
# X_Hofmann = model.matrix(lmmHofmann1)
# P = ncol(X_Hofmann)
# T1_Hofmann = VarCorr(lmmHofmann1)$id[1:P,1:P]
# #computing iccb
# icc_beta(X_Hofmann,Hofmann[,'id'],T1_Hofmann,vy_Hofmann)$rho_beta
#
# #Performing LR test
# library('RLRsim')
# lmmHofmann1a <- lmer(helping ~ mood_grp_cent + (1 |id),data=Hofmann,REML=F)
# obs.LRT <- 2*(logLik(lmmHofmann1)-logLik(lmmHofmann1a))[1]
# X <- getME(lmmHofmann1,"X")
# Z <- t(as.matrix(getME(lmmHofmann1,"Zt")))
# sim.LRT <- LRTSim(X, Z, 0, diag(ncol(Z)))
# (pval <- mean(sim.LRT > obs.LRT))
# ## End(Not run)
Run the code above in your browser using DataLab