# NOT RUN {
## One sample setting
simdata1 <- datasim(N = 1000, blambda = 0.05, testtimes = 1:8,
sensitivity = 0.7, specificity = 0.98, betas = NULL,
twogroup = NULL, pmiss = 0.3, design = "MCAR")
fit1 <- icmis(subject = ID, testtime = testtime, result = result,
data = simdata1, sensitivity = 0.7, specificity= 0.98,
formula = NULL, negpred = 1)
## Two group setting, and the two groups have same sample sizes
simdata2 <- datasim(N = 1000, blambda = 0.05, testtimes = 1:8,
sensitivity = 0.7, specificity = 0.98, betas = 0.7,
twogroup = 0.5, pmiss = 0.3, design = "MCAR")
fit2 <- icmis(subject = ID, testtime = testtime, result = result,
data = simdata2, sensitivity = 0.7, specificity= 0.98,
formula = ~group)
## Three covariates with coefficients 0.5, 0.8, and 1.0
simdata3 <- datasim(N = 1000, blambda = 0.05, testtimes = 1:8,
sensitivity = 0.7, specificity = 0.98, betas = c(0.5, 0.8, 1.0),
twogroup = NULL, pmiss = 0.3, design = "MCAR", negpred = 1)
fit3 <- icmis(subject = ID, testtime = testtime, result = result,
data = simdata3, sensitivity = 0.7, specificity= 0.98,
formula = ~cov1+cov2+cov3, negpred = 1)
## Fit data with NTFP missing mechanism (the fitting is same as MCAR data)
simdata4 <- datasim(N = 1000, blambda = 0.05, testtimes = 1:8,
sensitivity = 0.7, specificity = 0.98, betas = c(0.5, 0.8, 1.0),
twogroup = NULL, pmiss = 0.3, design = "NTFP", negpred = 1)
fit4 <- icmis(subject = ID, testtime = testtime, result = result,
data = simdata4, sensitivity = 0.7, specificity= 0.98,
formula = ~cov1+cov2+cov3, negpred = 1)
## Fit data with baseline misclassification
simdata5 <- datasim(N = 2000, blambda = 0.05, testtimes = 1:8,
sensitivity = 0.7, specificity = 0.98, betas = c(0.5, 0.8, 1.0),
twogroup = NULL, pmiss = 0.3, design = "MCAR", negpred = 0.97)
fit5 <- icmis(subject = ID, testtime = testtime, result = result,
data = simdata5, sensitivity = 0.7, specificity= 0.98,
formula = ~cov1+cov2+cov3, negpred = 0.97)
## Fit data with time varying covariates
simdata6 <- datasim(N = 1000, blambda = 0.05, testtimes = 1:8,
sensitivity = 0.7, specificity = 0.98, betas = c(0.5, 0.8, 1.0),
twogroup = NULL, pmiss = 0.3, design = "MCAR", negpred = 1,
time.varying = TRUE)
fit6 <- icmis(subject = ID, testtime = testtime, result = result,
data = simdata6, sensitivity = 0.7, specificity= 0.98,
formula = ~cov1+cov2+cov3, negpred = 1, time.varying = TRUE)
# }
Run the code above in your browser using DataLab