Before applying a method to a real authorship case, it is good practice to test it on known ground truth data. This function performs this test by taking as input either a single table of results or two tables, one for training and one for the test, and then returning as output a list with the following performance statistics: the log-likelihood ratio cost (both \(C_{llr}\) and \(C_{llr}^{min}\)), Equal Error Rate (ERR), the mean values of the log-likelihood ratio for both the same-author (TRUE) and different-author (FALSE) cases, the Area Under the Curve (AUC), Balanced Accuracy, Precision, Recall, F1, and the full confusion matrix. The binary classification statistics are all calculated considering a Log-Likelihood Ratio score of 0 as a threshold.