A function to compute the Akaike Information Criterion (AIC) for the fitted IFA model, according to the formula -2*log-likelihood + 2*npar, where npar represents the number of parameters.
Usage
ifa.aic(output)
Arguments
output
The fitted IFA model object, a list including the log-likelihood and the number of parameters
Value
It returns a numeric value with the corresponding AIC.
References
Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statistics. D. Reidel Publishing Company.
Viroli, C. (2005). Choosing the number of factors in Independent Factor Analysis model,
Metodoloski Zvezki, Advances in Methodology and Statistics, Vol. II, N. 2, 219-229.
Available at $www2.stat.unibo.it/viroli$.