library(dplyr)
igo_members("EU", year = 1993) %>% as_tibble()
igo_members("EU") %>% as_tibble()
igo_members("NAFTA", year = c(1995:1998)) %>% as_tibble()
# Extract different status
igo_members("ACCT", status = c("Associate Membership", "Observer")) %>%
as_tibble()
# States no members of the UN
igo_members("UN", status = "No Membership") %>%
as_tibble()
# Vectorized
igo_members(c("NAFTA", "EU"), year = 1993) %>%
as_tibble() %>%
arrange(state)
# Use countrycodes package to get additional codes
if (requireNamespace("countrycode", quietly = TRUE)) {
library(countrycode)
EU <- igo_members("EU")
EU$iso3c <- countrycode(EU$ccode, origin = "cown", destination = "iso3c")
EU$continent <- countrycode(EU$ccode,
origin = "cown",
destination = "continent"
)
tibble(EU)
}
Run the code above in your browser using DataLab