Learn R Programming

igoR (version 0.2.1)

igo_year_format3: Intergovernmental Organizations (IGO) by year

Description

Data on IGOs from 1815-2014, at the IGO-year level. Contains one record per IGO-year (with years listed at 5 year intervals through 1965, and annually thereafter).

Arguments

Format

data.frame with 19,335 rows. Relevant fields:

  • ioname: Short abbreviation of the IGO name.

  • orgname: Full IGO name.

  • year: Calendar Year.

  • afghanistan...zimbabwe: status of that state in the IGO. See Details.

  • sdate: start date (year) that the IGO started.

  • deaddate: dead date (year) that the IGO dead.

  • longorgname: a longer version of the IGOs name (including previous names)

  • ionum: IGO id number in v2.1 and v3.0 of the data.

  • version: COW version number.

See Codebook Version 3 IGO Data for full reference.

Details

Possible value of the status of that state in the IGO are:

CategoryNumerical Value
No Membership0
Full Membership1
Associate Membership2
Observer3
Missing data-9
State Not System Member-1

See igo_recode_igoyear() section for an easy way to recode the numerical values into factors.

References

Pevehouse, J. C., Nordstrom, T., McManus, R. W., & Jamison, A. S. (2020). Tracking organizations in the world: The Correlates of War IGO Version 3.0 datasets. Journal of Peace Research, 57(3), 492–503. tools:::Rd_expr_doi("10.1177/0022343319881175").

See Also

Other datasets: igo_recode_igoyear(), state_year_format3, states2016

Examples

Run this code
data("state_year_format3")

# Show a glimpse
library(dplyr)

state_year_format3 %>%
  select(ccode:afgec) %>%
  filter(year > 1990) %>%
  glimpse()

# Recode numerical to factors: with a sample
sample_state_year <- state_year_format3 %>%
  as_tibble() %>%
  select(ccode:afgec) %>%
  filter(year == 1990)

sample_state_year %>% glimpse()

# Recode
sample_state_year_recoded <- sample_state_year %>%
  mutate(across(-c(ccode:state), igo_recode_stateyear))

sample_state_year_recoded %>% glimpse()

Run the code above in your browser using DataLab