# NOT RUN {
############
### EG 1 ###
############
## example with synthetic data
## create an image that is a simple gaussian
img <- build.gaus(100,100,sig.x=2,sig.y=10,x.mid=80,y.mid=60)
## find the where the maximum value is
img.max <- which(img==max(img),arr.ind=TRUE)
## define a sigma for the low pass filter
sig=5
## define the low pass filter as another gaussian
lp.filt <- build.gaus(nrow(img),ncol(img),sig.x=sig)
## define a window size for the connected component algorithm
win.size=0.05
## perform the blob detection
blob <- blob.extract(img=img, blob.point=img.max,win.size=win.size,gaus=lp.filt)
####################
### PLOTTING EG1 ###
####################
## define x and y grid lines
grid.x <- 1:nrow(img)
grid.y <- 1:ncol(img)
dev.new()
close.screen(all.screens=TRUE)
split.screen(c(1,3))
screen(1)
image(grid.x,grid.y,img,main='Image')
screen(2)
image(grid.x,grid.y,blob$bin.image,col=gray.colors(2),main='Binarized LoG Image')
screen(3)
image(grid.x,grid.y,img,main='Img with Blob Detected')
points(blob$xy.coords,col='black',pch=16,cex=1)
## close the screens
close.screen(all.screens=TRUE)
############
### EG 2 ###
############
## example with volcano image data.
## This RBG image shows ash erupting above the crater, which is cropped out
data(sakurajima)
## crop accroding to these corner values
xleft = 1
xright = 188
ybottom = 1
ytop = 396
## crop the image using crop.image
cropped <- crop.image(sakurajima, xleft, ybottom, xright, ytop)
## redefine the crop image
img <- cropped$img.crop
######################
### PRE PROCESSING ###
######################
## separate the image into red, green, and blue images
r.img <- img[,,1]
g.img <- img[,,2]
b.img <- img[,,3]
## remove the mean
r.img <- r.img-mean(r.img)
g.img <- g.img-mean(g.img)
b.img <- b.img-mean(b.img)
## calculate the the plane trend...
r.img.trend <- fit3d(r.img)
g.img.trend <- fit3d(g.img)
b.img.trend <- fit3d(b.img)
## remove the trend
r.img.dtrend <- r.img-r.img.trend
g.img.dtrend <- g.img-g.img.trend
b.img.dtrend <- b.img-b.img.trend
################################
### SET UP SOME FILTER MASKS ###
################################
## define a sigma for the LP Gaussian Filter
gaus.sig=15
## build the Gaussian filter
gaus <- build.gaus(nrow(img),ncol(img),gaus.sig)
## find the extreme (absolute valued maximum) value of each RGB channel
blob.r.point <- which(abs(r.img.dtrend)==max(abs(r.img.dtrend)),arr.ind=TRUE)
blob.g.point <- which(abs(g.img.dtrend)==max(abs(g.img.dtrend)),arr.ind=TRUE)
blob.b.point <- which(abs(b.img.dtrend)==max(abs(b.img.dtrend)),arr.ind=TRUE)
## set a window size to be used in the connected component algorithm
win.size = 0.05
## extract the blob xy locations
blob.r <- blob.extract(r.img.dtrend,blob.r.point,win.size,gaus)
blob.g <- blob.extract(g.img.dtrend,blob.r.point,win.size,gaus)
blob.b <- blob.extract(b.img.dtrend,blob.r.point,win.size,gaus)
####################
### PLOTTING EG2 ###
####################
## note the blob points (blob$xy.coords) must be adjusted according to
## where the origin (0,0) is located in R plots image plots
blob.coords.r <- blob.r$xy.coords
blob.coords.r[,1] <- blob.r$xy.coords[,2]
blob.coords.r[,2] <- (blob.r$xy.coords[,1]-nrow(r.img))*-1
blob.coords.g <- blob.g$xy.coords
blob.coords.g[,1] <- blob.g$xy.coords[,2]
blob.coords.g[,2] <- (blob.g$xy.coords[,1]-nrow(g.img))*-1
blob.coords.b <- blob.b$xy.coords
blob.coords.b[,1] <- blob.b$xy.coords[,2]
blob.coords.b[,2] <- (blob.b$xy.coords[,1]-nrow(b.img))*-1
## save the users options
mar.usr=par()$mar
dev.new()
close.screen(all.screen=TRUE)
par(mar=c(0,0,2,0))
split.screen(c(1,2))
split.screen(c(3,1),screen=2)
screen(1)
image2(sakurajima,asp=1,axes=FALSE)
rect(ybottom,nrow(sakurajima)-xleft,ytop,nrow(sakurajima)-xright,lwd=3,border='white',lty=3)
title('Original Image',line=0,font=2,col='white',cex=2,)
screen(3)
image2(r.img,asp=1,axes=FALSE)
points(blob.coords.r,col=rgb(1,0,0,alpha=0.05),pch=16,cex=0.3)
title('Red Channel',line=0,font=2,col='red',cex=2)
screen(4)
image2(g.img,asp=1,axes=FALSE)
points(blob.coords.g,col=rgb(0,1,0,alpha=0.05),pch=16,cex=0.3)
title('Green Channel',line=0,font=2,col='darkgreen',cex=2)
screen(5)
image2(b.img,asp=1,axes=FALSE)
points(blob.coords.b,col=rgb(0,0,1,alpha=0.05),pch=16,cex=0.3)
title('Blue Channel',line=0,font=2,col='darkblue',cex=2)
## return the users original margins and close screens
par(mar=mar.usr)
close.screen(all.screens=TRUE)
# }
Run the code above in your browser using DataLab