Learn R Programming

impactr

impactr is a package with functions to read, process and analyse raw accelerometer data related to mechanical loading variables. You can learn more about this package features and how to use it in vignette("impactr").

Installation

To install the latest stable version of impactr from CRAN, run:

install.packages("impactr")

You can also install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("verasls/impactr")

Usage

library(impactr)

read_acc(impactr_example("hip-raw.csv")) |>
 define_region(
    start_time = "2021-04-06 15:45:00",
    end_time = "2021-04-06 15:45:30"
  ) |>
  specify_parameters(
    acc_placement = "hip",
    subj_body_mass = 78
  ) |>
  filter_acc() |>
  use_resultant() |>
  find_peaks(vector = "resultant") |>
  predict_loading(
    outcome = "grf",
    vector = "resultant",
    model = "walking/running"
  )
#> # Start time:              2021-04-06 15:43:00
#> # Sampling frequency:      100Hz
#> # Accelerometer placement: Hip
#> # Subject body mass:       78kg
#> # Filter:                  Butterworth (4th-ord, low-pass, 20Hz)
#> # Data dimensions:         26 × 3
#>    timestamp           resultant_peak_acc resultant_peak_grf
#>    <dttm>                           <dbl>              <dbl>
#>  1 2021-04-06 15:45:00               1.32              1466.
#>  2 2021-04-06 15:45:01               1.36              1469.
#>  3 2021-04-06 15:45:04               1.30              1464.
#>  4 2021-04-06 15:45:04               2.32              1543.
#>  5 2021-04-06 15:45:05               1.50              1480.
#>  6 2021-04-06 15:45:06               1.68              1494.
#>  7 2021-04-06 15:45:06               1.51              1480.
#>  8 2021-04-06 15:45:07               1.96              1515.
#>  9 2021-04-06 15:45:08               1.37              1470.
#> 10 2021-04-06 15:45:08               1.86              1508.
#> # ℹ 16 more rows

Copy Link

Version

Install

install.packages('impactr')

Monthly Downloads

269

Version

0.4.2

License

MIT + file LICENSE

Maintainer

Lucas Veras

Last Published

February 26th, 2024

Functions in impactr (0.4.2)

use_resultant

Use resultant vector
remove_nonwear

Detect and remove accelerometer non-wear time
delete_nonwear

Delete accelerometer non-wear time
find_peaks

Find peaks in a signal
is_impactr

Test if the object is from the impactr package
define_region

Define region of interest
impactr_example

Get path to example data
filter_acc

Filter the acceleration signal
install_accdata

Install accdata package
import_dataset

Import datasets from accdata package
predict_loading

Predict mechanical loading
specify_parameters

Specify prediction model parameters
read_acc

Read raw accelerometer data
mark_nonwear

Mark accelerometer non-wear time
summarise_nonwear

Summarise accelerometer non-wear time
detect_nonwear

Detection of accelerometer non-wear time
new_impactr_peaks

Constructor for impactr_peaks object
new_impactr_data

Constructor for impactr_data object
plot_nonwear

Plot the non-wear time detection
summarise_loading

Summarise mechanical loading variables