impute.knn
function from impute.wrapper.KNN(dataSet.mvs, K)
Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David Botstein and Russ B. Altman, Missing value estimation methods for DNA microarrays BIOINFORMATICS Vol. 17 no. 6, 2001 Pages 520-525
impute.knn
, impute.wrapper.SVD
, impute.wrapper.MLE
# generate expression data matrix
exprsDataObj = generate.ExpressionData(nSamples1 = 6, nSamples2 = 6,
meanSamples = 0, sdSamples = 0.2,
nFeatures = 1000, nFeaturesUp = 50, nFeaturesDown = 50,
meanDynRange = 20, sdDynRange = 1,
meanDiffAbund = 1, sdDiffAbund = 0.2)
exprsData = exprsDataObj[[1]]
# insert 15\% missing data with 100\% missing not at random
m.THR = quantile(exprsData, probs = 0.15)
sd.THR = 0.1
MNAR.rate = 100
exprsData.MD.obj = insertMVs(exprsData,m.THR,sd.THR,MNAR.rate)
exprsData.MD = exprsData.MD.obj[[2]]
# perform missing data imputation
exprsData.imputed = impute.wrapper.KNN(exprsData.MD,15)
## The function is currently defined as
function (dataSet.mvs, K)
{
resultKNN = impute.knn(dataSet.mvs, k = K, rowmax = 0.99,
colmax = 0.99, maxp = 1500, rng.seed = sample(1:1000,
1))
dataSet.imputed = resultKNN[[1]]
return(dataSet.imputed)
}
Run the code above in your browser using DataLab