Learn R Programming

imputeTS (version 1.7)

plotNA.distribution: Visualize Distribution of Missing Values

Description

Visualize the distribution of missing values within a time series.

Usage

plotNA.distribution(x, colPoints = "steelblue", colBackgroundMV = "indianred2", main = "Distribution of NAs", xlab = "Time", ylab = "Value", pch = 20, cexPoints = 0.8, col = "black", ...)

Arguments

x
Numeric Vector (vector) or Time Series (ts) object containing NAs
colPoints
Color of the points for each observation
colBackgroundMV
Color for the background for the NA sequences
main
Main label for the plot
xlab
Label for x axis of the plot
ylab
Label for y axis of plot
pch
Plotting 'character', i.e., symbol to use.
cexPoints
character (or symbol) expansion: a numerical vector.
col
Color for the lines.
...
Additional graphical parameters that can be passed through to plot

Details

This function visualizes the distribution of missing values within a time series. Therefore, the time series is plotted and whenever a value is NA the background is colored differently. This gives a nice overview, where in the time series most of the missing values occur.

See Also

plotNA.distributionBar, plotNA.gapsize, plotNA.imputations

Examples

Run this code
#Example 1: Visualize the missing values in x
x <- ts(c(1:11, 4:9,NA,NA,NA,11:15,7:15,15:6,NA,NA,2:5,3:7))
plotNA.distribution(x)

#Example 2: Visualize the missing values in tsAirgap time series
plotNA.distribution(tsAirgap)

Run the code above in your browser using DataLab