Perform Principal Component Analysis (PCA) on log-expression data.
pcainfo(logcounts, center, scale)
An object of class "prcomp " containing the PCA results, including loadings, scores, and explained variance.
Numeric matrix. Log-CPM values (genes × samples), e.g., from edgeR::cpm..
Logical. If TRUE, center variables by subtracting the mean (default: TRUE).
Logical. If TRUE, scale variables to unit variance (default: FALSE).
This function transposes a log-count matrix (samples as columns, genes as rows) and runs PCA using "stats::prcomp() ", with options to center and scale variables.