Learn R Programming

inferr

Tools for Statistical Inference

Overview

inferr builds upon the statistical tests provided in stats, provides additional and flexible input options and more detailed and structured test results. As of version 0.3, inferr includes a select set of parametric and non-parametric statistical tests which are listed below:

  • One Sample t Test
  • Paired Sample t Test
  • Independent Sample t Test
  • One Sample Proportion Test
  • Two Sample Proportion Test
  • One Sample Variance Test
  • Two Sample Variance Test
  • Binomial Test
  • ANOVA
  • Chi Square Goodness of Fit Test
  • Chi Square Independence Test
  • Levene’s Test
  • Cochran’s Q Test
  • McNemar Test
  • Runs Test for Randomness

Installation

# install inferr from CRAN
install.packages("inferr")

# the development version from github
# install.packages("devtools")
devtools::install_github("rsquaredacademy/inferr")

Articles

Usage

One Sample t Test

infer_os_t_test(hsb, write, mu = 50, type = 'all')
#>                               One-Sample Statistics                               
#> ---------------------------------------------------------------------------------
#>  Variable    Obs     Mean     Std. Err.    Std. Dev.    [95% Conf. Interval] 
#> ---------------------------------------------------------------------------------
#>   write      200    52.775     0.6702       9.4786       51.4537    54.0969   
#> ---------------------------------------------------------------------------------
#> 
#>                                   Two Tail Test                                  
#>                                  ---------------                                  
#> 
#>                                Ho: mean(write) ~=50                              
#>                                Ha: mean(write) !=50                               
#> --------------------------------------------------------------------------------
#>  Variable      t      DF       Sig       Mean Diff.    [95% Conf. Interval] 
#> --------------------------------------------------------------------------------
#>   write      4.141    199    0.00005       2.775         1.4537     4.0969   
#> --------------------------------------------------------------------------------

ANOVA

infer_oneway_anova(hsb, write, prog)
#>                                 ANOVA                                  
#> ----------------------------------------------------------------------
#>                    Sum of                                             
#>                    Squares     DF     Mean Square      F        Sig.  
#> ----------------------------------------------------------------------
#> Between Groups    3175.698      2      1587.849      21.275      0    
#> Within Groups     14703.177    197      74.635                        
#> Total             17878.875    199                                    
#> ----------------------------------------------------------------------
#> 
#>                  Report                   
#> -----------------------------------------
#> Category     N       Mean      Std. Dev. 
#> -----------------------------------------
#>    1        45      51.333       9.398   
#>    2        105     56.257       7.943   
#>    3        50      46.760       9.319   
#> -----------------------------------------
#> 
#> Number of obs = 200       R-squared     = 0.1776 
#> Root MSE      = 8.6392    Adj R-squared = 0.1693

Chi Square Test of Independence

infer_chisq_assoc_test(hsb, female, schtyp)
#>                Chi Square Statistics                 
#> 
#> Statistics                     DF    Value      Prob 
#> ----------------------------------------------------
#> Chi-Square                     1    0.0470    0.8284
#> Likelihood Ratio Chi-Square    1    0.0471    0.8282
#> Continuity Adj. Chi-Square     1    0.0005    0.9822
#> Mantel-Haenszel Chi-Square     1    0.0468    0.8287
#> Phi Coefficient                     0.0153          
#> Contingency Coefficient             0.0153          
#> Cramer's V                          0.0153          
#> ----------------------------------------------------

Levene’s Test

infer_levene_test(hsb, read, group_var = race)
#>            Summary Statistics             
#> Levels    Frequency    Mean     Std. Dev  
#> -----------------------------------------
#>   1          24        46.67      10.24   
#>   2          11        51.91      7.66    
#>   3          20        46.8       7.12    
#>   4          145       53.92      10.28   
#> -----------------------------------------
#> Total        200       52.23      10.25   
#> -----------------------------------------
#> 
#>                              Test Statistics                              
#> -------------------------------------------------------------------------
#> Statistic                            Num DF    Den DF         F    Pr > F 
#> -------------------------------------------------------------------------
#> Brown and Forsythe                        3       196      3.44    0.0179 
#> Levene                                    3       196    3.4792     0.017 
#> Brown and Forsythe (Trimmed Mean)         3       196    3.3936     0.019 
#> -------------------------------------------------------------------------

Cochran’s Q Test

infer_cochran_qtest(exam, exam1, exam2, exam3)
#>    Test Statistics     
#> ----------------------
#> N                   15 
#> Cochran's Q       4.75 
#> df                   2 
#> p value          0.093 
#> ----------------------

McNemar Test

hb <- hsb
hb$himath <- ifelse(hsb$math > 60, 1, 0)
hb$hiread <- ifelse(hsb$read > 60, 1, 0)
infer_mcnemar_test(hb, himath, hiread)
#>            Controls 
#> ---------------------------------
#> Cases       0       1       Total 
#> ---------------------------------
#>   0        135      21        156 
#>   1         18      26         44 
#> ---------------------------------
#> Total      153      47        200 
#> ---------------------------------
#> 
#>        McNemar's Test        
#> ----------------------------
#> McNemar's chi2        0.2308 
#> DF                         1 
#> Pr > chi2              0.631 
#> Exact Pr >= chi2      0.7493 
#> ----------------------------
#> 
#>        Kappa Coefficient         
#> --------------------------------
#> Kappa                     0.4454 
#> ASE                        0.075 
#> 95% Lower Conf Limit      0.2984 
#> 95% Upper Conf Limit      0.5923 
#> --------------------------------
#> 
#> Proportion With Factor 
#> ----------------------
#> cases             0.78 
#> controls         0.765 
#> ratio           1.0196 
#> odds ratio      1.1667 
#> ----------------------

Getting Help

If you encounter a bug, please file a minimal reproducible example using reprex on github. For questions and clarifications, use StackOverflow.

Copy Link

Version

Install

install.packages('inferr')

Monthly Downloads

652

Version

0.3.1

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Aravind Hebbali

Last Published

May 28th, 2021

Functions in inferr (0.3.1)

infer_cochran_qtest

Cochran Q Test
infer_os_t_test

One Sample t Test
infer_os_prop_test

One Sample Test of Proportion
infer_ts_ind_ttest

Two Independent Sample t Test
infer_ts_paired_ttest

Paired t test
infer_ts_var_test

Two Sample Variance Comparison Test
infer_ts_prop_test

Two Sample Test of Proportion
treatment2

Dummy data set for 2 Sample Proportion test
treatment

Dummy data set for 2 Sample Proportion test
inferr

inferr package
infer_os_var_test

One Sample Variance Comparison Test
infer_runs_test

Test for Random Order
infer_chisq_gof_test

Chi Square Goodness of Fit Test
infer_oneway_anova

One Way ANOVA
infer_mcnemar_test

McNemar Test
exam

Dummy data set for Cochran's Q test
infer_launch_shiny_app

Launch Shiny App
infer_levene_test

Levene's test for equality of variances
hsb

High School and Beyond Data Set
infer_binom_calc

Binomial Test
infer_chisq_assoc_test

Chi Square Test of Association