influence(model, group=NULL, select=NULL, obs=FALSE,
gf="single", count = FALSE, delete=TRUE, ...)gf="single" (default), the levels of the specified grouping factor are only neutralized regarding the grouping factor specified in group. In its present form, gf="single" only works on mixed models with a maximum of 2 grouping factors. If gf="all", the influence from the levels of group is neutralized regarding all grouping factors in the model. This option only applies to models with more than a single grouping factor.Belsley, D.A., Kuh, E. & Welsch, R.E. (1980). Regression Diagnostics. Identifying Influential Data and Source of Collinearity. Wiley. Langford, I. H. and Lewis, T. (1998). Outliers in multilevel data. Journal of the Royal Statistical Society: Series A (Statistics in Society), 161:121-160.
Snijders, T.A. & Bosker, R.J. (1999). Multilevel Analysis, an introduction to basic and advanced multilevel modeling. Sage.
Van der Meer, T., Te Grotenhuis, M., & Pelzer, B. (2010). Influential Cases in Multilevel Modeling: A Methodological Comment. American Sociological Review, 75(1), 173-178.
cooks.distance.estex, dfbetas.estex
data(school23)
model.a <- lmer(math ~ structure + SES + (1 | school.ID), data=school23)
alt.est.a <- influence(model=model.a, group="school.ID")
alt.est.b <- influence(model=model.a, group="school.ID", select="7472")
alt.est.c <- influence(model=model.a, group="school.ID", select=c("7472", "62821"))
data(Penicillin, package="lme4")
model.b <- lmer(diameter ~ (1|plate) + (1|sample), Penicillin)
alt.est.d <- influence(model=model.b, group="plate")
alt.est.e <- influence(model=model.b, group="sample")
alt.est.f <- influence(model=model.b, group="sample", gf="all")
Run the code above in your browser using DataLab