pchange(estex, parameters = 0, sort=FALSE, to.sort=NA, abs=FALSE)sort=TRUE the values of percentage change are ordered based on magnitude. If sort=FALSE (default) no sorting takes place.parameters), this parameter can be omitted. If percentage changes are calculated for multiple variables, and sort=TRUE, specification of to.sort is required, or an error is returned.abs=TRUE, the absolute values of percentage change are returned, while if abs=FALSE (default), both positive and negative values are possible. If both abs=TRUE and sort=TRUE, the abs parameters precedes the sort parameter, and thus the absolute values of percentage change are sorted.Snijders, T.A. & Bosker, R.J. (1999). Multilevel Analysis, an introduction to basic and advanced multilevel modeling. Sage.
Van der Meer, T., Te Grotenhuis, M., & Pelzer, B. (2010). Influential Cases in Multilevel Modeling: A Methodological Comment. American Sociological Review, 75(1), 173-178.
influence, cooks.distance.estex,
dfbetas.estex data(school23)
model <- lmer(math ~ structure + SES + (1 | school.ID), data=school23)
alt.est <- influence(model, group="school.ID")
pchange(alt.est)
Run the code above in your browser using DataLab