Learn R Programming

⚠️There's a newer version (2.3.0) of this package.Take me there.

ingredients (version 0.3.1)

Effects and Importances of Model Ingredients

Description

Collection of tools for assessment of feature importance and feature effects. Key functions are: feature_importance() for assessment of global level feature importance, ceteris_paribus() for calculation of the what-if plots, partial_dependency() for partial dependency plots, conditional_dependency() for conditional dependency plots, accumulated_dependency() for accumulated local effects plots, aggregate_profiles() and cluster_profiles() for aggregation of ceteris paribus profiles, theme_drwhy() with a 'ggplot2' skin for all plots, generic print() and plot() for better usability of selected explainers. The package 'ingredients' is a part of the 'DrWhy.AI' universe (Biecek 2018) .

Copy Link

Version

Install

install.packages('ingredients')

Monthly Downloads

4,713

Version

0.3.1

License

GPL

Maintainer

Przemyslaw Biecek

Last Published

April 9th, 2019

Functions in ingredients (0.3.1)

calculate_variable_split

Internal Function for Split Points for Selected Variables
plot.ceteris_paribus_oscillations

Plot Ceteris Paribus Oscillations
calculate_oscillations

Calculate Oscillations for Ceteris Paribus Explainer
calculate_variable_profile

Internal Function for Individual Variable Profiles
plot.feature_importance_explainer

Plots Variable Importance
plot.ceteris_paribus_2d_explainer

Plot Ceteris Paribus 2D Explanations
plot.ceteris_paribus_explainer

Plots Ceteris Paribus Profiles
show_observations

Adds a Layer with Observations to a Profile Plot
ceteris_paribus_2d

Ceteris Paribus 2D Plot
cluster_profiles

Cluster Ceteris Paribus Profiles
print.ceteris_paribus_explainer

Prints Individual Variable Explainer Summary
select_neighbours

Select Subset of Rows Closest to a Specified Observation
show_rugs

Adds a Layer with Rugs to a Profile Plot
select_sample

Select Subset of Rows
show_aggreagated_profiles

Adds a Layer with Aggregated Profiles
conditional_dependency

Conditional Dependency Profiles
feature_importance

Feature Importance Plots
partial_dependency

Partial Dependency Profiles
plot.aggregated_profiles_explainer

Adds a Layer with Aggregated Profiles
accumulated_dependency

Accumulated Local Effects Profiles aka ALEPlots
aggregate_profiles

Aggregate Ceteris Paribus Profiles
plotD3

Plot Feature Importance Objects in D3 with r2d3 Package.
print.aggregated_ceteris_paribus_explainer

Prints Aggregated Profiles
theme_drwhy

DrWhy Theme for ggplot Objects
ceteris_paribus

Ceteris Paribus Profiles aka Individual Variable Profiles