
Point data and count data, together with intensity function and expected counts for a unimodal nonhomogeneous 1-dimensional Poisson process example.
data(Poisson2_1D)
The data contain the following R
objects:
lambda2_1D
:A function defining the intensity function of a nonhomogeneous Poisson process. Note that this function is only defined on the interval (0,55).
cov2_1D
:A function that gives what we will call a 'habitat suitability' covariate in 1D space.
E_nc2
The expected counts of the gridded data.
pts2
The locations of the observed points (a data frame with one column, named x
).
countdata2
A data frame with three columns, containing the count data:
x
count
exposure
# NOT RUN {
library(ggplot2)
data(Poisson2_1D)
p1 = ggplot(countdata2) +
geom_point(data = countdata2, aes(x=x,y=count),col="blue") +ylim(0,max(countdata2$count,E_nc2)) +
geom_point(data = countdata2, aes(x=x), y = 0, shape = "+",col="blue",cex=4) +
geom_point(data=data.frame(x=countdata2$x,y=E_nc2), aes(x=x), y = E_nc2, shape = "_",cex=5) +
xlab(expression(bold(s))) +ylab("count")
ss = seq(0,55,length=200)
lambda = lambda2_1D(ss)
p2 = ggplot() +
geom_line(data=data.frame(x=ss,y=lambda), aes(x=x,y=y),col="blue") +ylim(0,max(lambda)) +
geom_point(data = pts2, aes(x=x), y = 0.2, shape = "|",cex=4) +
xlab(expression(bold(s))) +ylab(expression(lambda(bold(s))))
multiplot(p1,p2,cols=1)
# }
Run the code above in your browser using DataLab