# NOT RUN {
if (require("INLA", quietly = TRUE)) {
# Load 1D Poisson process data
data(Poisson2_1D, package = "inlabru")
# Take a look at the point (and frequency) data
ggplot(pts2) +
geom_histogram(aes(x = x), binwidth = 55/20, boundary = 0, fill = NA, color = "black") +
geom_point(aes(x), y = 0, pch = "|", cex = 4) +
coord_fixed(ratio = 1)
# Fit an LGCP model with and SPDE component
x <- seq(0, 55, length = 20)
mesh1D <- inla.mesh.1d(x, boundary = "free")
mdl <- x ~ spde1D(map = x, model = inla.spde2.matern(mesh1D)) + Intercept
fit <- lgcp(mdl, pts2, domain = list(x = c(0,55)))
# Calculate and plot the posterior range
range = spde.posterior(fit, "spde1D", "range")
plot(range)
# Calculate and plot the posterior log range
lrange = spde.posterior(fit, "spde1D", "log.range")
plot(lrange)
# Calculate and plot the posterior variance
variance = spde.posterior(fit, "spde1D", "variance")
plot(variance)
# Calculate and plot the posterior log variance
lvariance = spde.posterior(fit, "spde1D", "log.variance")
plot(lvariance)
# Calculate and plot the posterior Matern correlation
matcor = spde.posterior(fit, "spde1D", "matern.correlation")
plot(matcor)
# Calculate and plot the posterior Matern covariance
matcov = spde.posterior(fit, "spde1D", "matern.covariance")
plot(matcov)
}
# }
Run the code above in your browser using DataLab