Learn R Programming

inspector (version 1.0.3)

inspect_data_cat_as_dichotom: Validate categorical data as dichotomous

Description

inspect_data_cat_as_dichotom checks if an object contains valid categorical data that is eligible to be used as dichotomous data. This can be useful to validate inputs in user-defined functions.

Usage

inspect_data_cat_as_dichotom(
  data,
  success,
  allow_nas = TRUE,
  warning_nas = FALSE
)

Arguments

data, success

Arbitrary objects. success is meant to indicate the value of data that corresponds to a success.

allow_nas

Logical value. If TRUE then NA and NaN values in data are allowed. If FALSE, execution is stopped and an error message is thrown in case there are NA or NaN values in data.

warning_nas

Logical value. If TRUE then the presence of NA or NaN values in data generates a warning message. NA and NaN values pass silently otherwise (if allow_nas is set toTRUE).

Value

inspect_data_cat_as_dichotom does not return any output. There are three possible outcomes:

  • The call is silent if:

    • data contains valid categorical data that is eligible to be used as dichotomous data and there are no NA or NaN values in data.

    • data contains valid categorical data that is eligible to be used as dichotomous data, there are some NA or NaN values in data, allow_nas is set to TRUE and warning_nas is set to FALSE.

  • An informative warning message is thrown if:

    • data contains valid categorical data that is eligible to be used as dichotomous data and success is not observed in data.

    • data contains valid categorical data that is eligible to be used as dichotomous data, there are NA or NaN values in data and both allow_nas and warning_nas are set to TRUE.

  • An informative error message is thrown and the execution is stopped if:

    • data does not contain valid categorical data that is eligible to be used as dichotomous data.

    • data contains valid categorical data that is eligible to be used as dichotomous data, there are some NA or NaN values in data and allow_nas is set to FALSE.

Details

inspect_data_cat_as_dichotom conducts a series of tests to check if data contains valid categorical data that is eligible to be used as dichotomous data. Namely, inspect_data_cat_as_dichotom checks if:

  • data and success are NULL or empty.

  • data and success are atomic and have an eligible data type (logical, integer, double, character).

  • data and success have NA or NaN values.

  • success has length 1.

  • success is observed in data.

See Also

Examples

Run this code
# NOT RUN {
# Calls that pass silently:
x1 <- c(1, 0, 0, 1, 0)
x2 <- c(FALSE, FALSE, TRUE)
x3 <- c("yes", "no", "yes")
x4 <- factor(c("yes", "no", "yes"))
x5 <- c(1, 0, 0, 1, 0, NA)
inspect_data_cat_as_dichotom(x1, success = 1)
inspect_data_cat_as_dichotom(x2, success = TRUE)
inspect_data_cat_as_dichotom(x3, success = "yes")
inspect_data_cat_as_dichotom(x4, success = "yes")
inspect_data_cat_as_dichotom(x5, success = 1)

# Calls that throw an informative warning message:
y1 <- c(1, 1, NA, 0, 0)
y2 <- c(0, 0)
success <- 1
try(inspect_data_cat_as_dichotom(y1, success = 1, warning_nas = TRUE))
try(inspect_data_cat_as_dichotom(y2, success = success))

# Calls that throw an informative error message:
try(inspect_data_cat_as_dichotom(y1, 1, allow_nas = FALSE))
try(inspect_data_cat_as_dichotom(NULL, 1))
try(inspect_data_cat_as_dichotom(c(1, 0), NULL))
try(inspect_data_cat_as_dichotom(list(1, 0), 1))
try(inspect_data_cat_as_dichotom(c(1, 0), list(1)))
try(inspect_data_cat_as_dichotom(numeric(0), 0))
try(inspect_data_cat_as_dichotom(1, numeric(0)))
try(inspect_data_cat_as_dichotom(NaN, 1))
try(inspect_data_cat_as_dichotom(NA, 1))
try(inspect_data_cat_as_dichotom(c(1, 0), NA))
try(inspect_data_cat_as_dichotom(c(1, 0), NaN))
try(inspect_data_cat_as_dichotom(c(1, 0), 2))
# }

Run the code above in your browser using DataLab