## Example of observation-specific boundaries
## Estimate the willingness to pay for the Kakadu National Park
## Data given in intervals -- 'lower' for lower bound and 'upper' for upper bound.
## Note that dichotomous-coice answers are already coded to 'lower' and 'upper'
data(Kakadu, package="Ecdat")
set.seed(1)
Kakadu <- Kakadu[sample(nrow(Kakadu), 400),]
# subsample to speed up the estimation
## Estimate in log form, change 999 to Inf
lb <- log(Kakadu$lower)
ub <- Kakadu$upper
ub[ub > 998] <- Inf
ub <- log(ub)
y <- cbind(lb, ub)
m <- intReg(y ~ sex + log(income) + age + schooling +
recparks + jobs + lowrisk + wildlife + future + aboriginal + finben +
mineparks + moreparks + gov +
envcon + vparks + tvenv + major, data=Kakadu)
## You may want to compare the results to Werner (1999),
## Journal of Business and Economics Statistics 17(4), pp 479-486
print(coef(m))
print(coef(m, boundaries=TRUE))
print(nObs(m))
Run the code above in your browser using DataLab