Bootstrap varince estimation for the estimated regression coefficients
Usage
bssmle_se(formula, data, alpha, do.par, nboot)
Arguments
formula
a formula object relating survival object Surv2(v, u, event) to a set of covariates
data
a data frame to be used
alpha
\(\alpha=(\alpha1, \alpha2)\) contains parameters that that define the link functions from class of generalized odds-rate transformation models. The components \(\alpha1\) and \(\alpha2\) should both be \(\ge 0\). If \(\alpha1 = 0\), the user assumes a proportional subdistribution hazards or Fine-Gray model for cause of failure 1. If \(\alpha2 = 1\), the user assumes a proportional odds model for cause of failure 2.
do.par
using parallel computing for bootstrap. If TRUE, parallel computing will be used during the bootstrap estimation of the variance-covariance matrix for the regression parameter estimates.
nboot
a number of bootstrap samples for estimating variances and covariances of the estimated regression coefficients. If nboot = 0, ciregic does dot perform bootstrap estimation of the variance matrix of the regression parameter estimates and returns NA in the place of the estimated variance matrix of the regression parameter estimates.
Value
The function bssmle_se returns a list of components:
numboot
a number of bootstrap converged
Sigma
an estimated bootstrap variance-covariance matrix of the estimated regression coefficients
Details
The function bssmle_se estimates bootstrap standard errors for the estimated regression coefficients from the function bssmle.