library(rms)
library(mlbench)
data(PimaIndiansDiabetes)
# Set age on a 5-year scale
PimaIndiansDiabetes$age <- PimaIndiansDiabetes$age/5
# Recode diabetes as 0/1
PimaIndiansDiabetes$diabetes <- ifelse(PimaIndiansDiabetes$diabetes=="pos" , 1 , 0)
# Logistic model predicting diabetes over BMI, age and glucose
myformula <- diabetes ~ mass + age * rcs( glucose , 3 )
model <- lrm(myformula , data = PimaIndiansDiabetes )
intEST( var2values = 20:80
, model = model , data = PimaIndiansDiabetes , var1 ="age", var2="glucose"
, ci=TRUE , conf = 0.95 , ci.method = "delta")
# Linear model predicting BMI over diabetes, age and glucose
myformula2 <- mass ~ diabetes + age * rcs( glucose , 3 )
model2 <- glm(myformula2 , data = PimaIndiansDiabetes , family = "gaussian")
intEST( var2values = 20:80
, model = model2 , data = PimaIndiansDiabetes , var1 ="age", var2="glucose"
, ci=TRUE , conf = 0.95 , ci.method = "delta")
Run the code above in your browser using DataLab