Learn R Programming

intercure (version 0.1.0)

inter_frailty_cl: Cure rate frailty model for interval censored clustered data

Description

inter_frailty_cl returns a list with the estimated parameters par and their covariance matrix mcov. The list also contains a dummy variable stop_c assuming 0 if algorithm converged and 1 if a stop criteria ended the process.

Usage

inter_frailty_cl(dataset, left, right, delta, cov_theta, cov_beta, grp, M, b = 0.001, tol = 0.001, max_n = 100, par_cl = NULL, burn_in = 50, output_files = FALSE)

Arguments

dataset
Dataset used to fit the model.
left
Vector containing the last check times before event.
right
Vector containing the first check times after event.
delta
Flag vector indicating failure inside interval.
cov_theta
String vector containing the column names to be used on the cure rate predictor.
cov_beta
String vector containing the column names to be used on the predictor associated with the hazard function.
grp
Vector containing cluster identifier (numeric or string).
M
Number of replicates generated by each iteration on the ANDA (Asymptotic Normal Data Augmentation) algorithm.
b
Parameter for initial theta and beta variances.
tol
Numeric for tolerance of convergence.
max_n
Maximum number of algorithm's iterations without the burn in.
par_cl
Registered SOCK cluster for parallel process. If NULL (default) the program loops are executed sequentially.
burn_in
Number of burn in iterations.
output_files
Boolean indicating if text outputs for the estimates and variances should be generated.

Value

The inter_frailty_cl function returns an list containing the following outputs:
par
estimates of theta and beta parameters.
mcov
estimates for the covariance matrix of theta and beta parameters.
stop_c
stop criteria indicator assuming 1 when process is stopped for a non-convergence criteria. Assumes 0 when convergence is reached.

Examples

Run this code
set.seed(3)
sample_set <- sim_frailty_cl(80, nclus = 3)

## few iterations just to check how to use the function

inter_frailty_cl(sample_set, sample_set$L, sample_set$R, sample_set$delta,
c("xi1"), c("xi1"), grp = sample_set$clus, M = 20,
max_n = 2, burn_in = 0)

## precise estimate (computationally intensive)
## Not run: 
# 
# inter_frailty_cl(sample_set, sample_set$L, sample_set$R, sample_set$delta,
# c("xi1", "xi2"), c("xi1", "xi2"), grp = sample_set$clus, M = 20,
# max_n = 30, burn_in = 10)
# ## End(Not run)

Run the code above in your browser using DataLab