Learn R Programming

inti (version 0.6.6)

remove_outliers: Remove outliers using mixed models

Description

Use the method M4 in Bernal Vasquez (2016). Bonferroni Holm test to judge residuals standardized by the re scaled MAD (BH MADR).

Usage

remove_outliers(data, formula, drop_na = FALSE, plot_diag = FALSE)

Value

list. 1. Table with date without outliers. 2. The outliers in the dataset.

Arguments

data

Experimental design data frame with the factors and traits.

formula

mixed model formula.

drop_na

drop NA values from the data.frame

plot_diag

Diagnostic plot based in the raw and clean data

Details

Function to remove outliers in MET experiments

References

Bernal Vasquez, Angela Maria, et al. “Outlier Detection Methods for Generalized Lattices: A Case Study on the Transition from ANOVA to REML.” Theoretical and Applied Genetics, vol. 129, no. 4, Apr. 2016.

Examples

Run this code

library(inti)

rmout <- potato %>%
  remove_outliers(data = .
  , formula = stemdw ~ 0 + (1|bloque) + treat*geno
  , plot_diag = FALSE
  , drop_na = FALSE
  )

rmout
  

Run the code above in your browser using DataLab