data(invacost)
### Cleaning steps
# Eliminating data with no information on starting and ending years
invacost <- invacost[-which(is.na(invacost$Probable_starting_year_adjusted)), ]
invacost <- invacost[-which(is.na(invacost$Probable_ending_year_adjusted)), ]
# Keeping only observed and reliable costs
invacost <- invacost[invacost$Implementation == "Observed", ]
invacost <- invacost[which(invacost$Method_reliability == "High"), ]
# Eliminating data with no usable cost value
invacost <- invacost[-which(is.na(invacost$Cost_estimate_per_year_2017_USD_exchange_rate)), ]
### Expansion
# \donttest{
db.over.time <- expandYearlyCosts(invacost,
startcolumn = "Probable_starting_year_adjusted",
endcolumn = "Probable_ending_year_adjusted")
### Analysis
res <- modelCosts(db.over.time,
minimum.year = 1970,
maximum.year = 2020)
### Visualisation
plot(res)
plot(res, plot.type = "single")# }
Run the code above in your browser using DataLab