Learn R Programming

ioanalysis (version 0.3.4)

lq: Simple Location Quotient Updating

Description

Uses simple linear quotient technique to update the matrix of technical input coefficients (A)

Usage

lq(io)

Arguments

io

An InputOutput class object from as.inputoutput

Value

Produces the forecast of the matrix of technical input coefficients (A) using the Slq technique.

Details

Uses the simple linear quotient technique as follows: $$lq_i = \frac{X_i^r / X^r}{X_i^n / X^n}$$ where \(X^n\) is the total production, \(X^r\) is the total production for region r, \(X^r_i\) is the production for region r sector i, and \(X^n_i\) is the total production for the ith sector.

Then lq is converted such that if \(lq_i > 1\), then \(lq_i = 1\). Then lq is converted into a diagonal matrix of values less than or equal to 1, which gives us our final results $$\hat{A} = A lq$$

References

Blair, P.D. and Miller, R.E. (2009). "Input-Output Analysis: Foundations and Extensions". Cambridge University Press

Nazara, Suahasil & Guo, Dong & Hewings, Geoffrey J.D., & Dridi, Chokri, 2003. "PyIO. Input-Output Analysis with Python". REAL Discussion Paper 03-t-23. University of Illinois at Urbana-Champaign. (http://www.real.illinois.edu/d-paper/03/03-t-23.pdf)

Examples

Run this code
# NOT RUN {
data(toy.IO)
class(toy.IO)

Anew <- lq(toy.IO)
# }

Run the code above in your browser using DataLab