Learn R Programming

iopsych (version 0.90.1)

paretoXY: Computes data needed for a XY Pareto plot.

Description

Computes data needed for a XY Pareto plot.

Usage

paretoXY(r_mat, x_col, y_col, d_vec, gen = 100, pop = 100, pred_lower = rep(-2, length(x_col)), pred_upper = rep(2, length(x_col)))

Arguments

r_mat
A correlation matrix.
x_col
A vector of columns representing predictor variables.
y_col
A vector of columns representing criterion variables.
d_vec
A vector of d scores.
gen
The number of iterations used by the algorithim.
pop
The population or number of cases used by the algorithim.
pred_lower
The minimum weight allowed for each predictor.
pred_upper
The maximum weight allowed for each predictor.

Value

  • betasA matrix of beta weights for each criteria weight
  • mr_dA matrix of multiple correlations or d values corresponding to each row of beta weights.
  • pareto_optimalA vector indicating whether each value is pareto optimal

Examples

Run this code
data(dls2007)
dat <- dls2007
r_mat <- dat[1:6, 2:7]
x_col <- 1:4 
y_col <- 5:6
d_vec <- dat[1:4, 1]

paretoXY(r_mat=r_mat, x_col=1:4, y_col=5, d_vec=d_vec, pred_lower=c(0,0,0,0))
paretoXY(r_mat=r_mat, x_col=1:4, y_col=c(5,6))

Run the code above in your browser using DataLab