#-- Generate Example Data
set.seed(12345)
dat <- simdat(n = c(300, 300, 300), effect = 1, sigma_Y = 1)
head(dat)
formula <- Y - f ~ X1
#-- PostPI Analytic Correction (Wang et al., 2020)
fit_postpi1 <- ipd(formula, method = "postpi_analytic", model = "ols",
data = dat, label = "set_label")
#-- PostPI Bootstrap Correction (Wang et al., 2020)
nboot <- 200
fit_postpi2 <- ipd(formula, method = "postpi_boot", model = "ols",
data = dat, label = "set_label", nboot = nboot)
#-- PPI (Angelopoulos et al., 2023)
fit_ppi <- ipd(formula, method = "ppi", model = "ols",
data = dat, label = "set_label")
#-- PPI++ (Angelopoulos et al., 2023)
fit_plusplus <- ipd(formula, method = "ppi_plusplus", model = "ols",
data = dat, label = "set_label")
#-- PSPA (Miao et al., 2023)
fit_pspa <- ipd(formula, method = "pspa", model = "ols",
data = dat, label = "set_label")
#-- Print the Model
print(fit_postpi1)
#-- Summarize the Model
summ_fit_postpi1 <- summary(fit_postpi1)
#-- Print the Model Summary
print(summ_fit_postpi1)
#-- Tidy the Model Output
tidy(fit_postpi1)
#-- Get a One-Row Summary of the Model
glance(fit_postpi1)
#-- Augment the Original Data with Fitted Values and Residuals
augmented_df <- augment(fit_postpi1)
head(augmented_df)
Run the code above in your browser using DataLab