- Y_l
(vector): n-vector of labeled outcomes.
- f_l
(vector): n-vector of predictions in the labeled data.
- f_u
(vector): N-vector of predictions in the unlabeled data.
- alpha
(scalar): type I error rate for hypothesis testing - values in
(0, 1); defaults to 0.05.
- alternative
(string): Alternative hypothesis. Must be one of
"two-sided"
, "less"
, or "greater"
.
- lhat
(float, optional): Power-tuning parameter (see
https://arxiv.org/abs/2311.01453). The default value, NULL
,
will estimate the optimal value from the data. Setting lhat = 1
recovers PPI with no power tuning, and setting lhat = 0
recovers
the classical point estimate.
- coord
(int, optional): Coordinate for which to optimize
lhat = 1
. If NULL
, it optimizes the total variance over all
coordinates. Must be in (1, ..., d) where d is the dimension of the estimand.
- w_l
(ndarray, optional): Sample weights for the labeled data set.
Defaults to a vector of ones.
- w_u
(ndarray, optional): Sample weights for the unlabeled
data set. Defaults to a vector of ones.