data(ipd.data)
data(meta.data)
set.seed(401)
#UNIVARIATE FRAILTY BY STUDY FACTOR
fit <- coxmeta.mixed(
Surv(time,event)~trt,surv~log(time)+trt,~(1|group),
ipd.data,
meta.data,
ipd.groups=8,meta.groups=2,
meta.data$sigma2,
meta.data$sub.group,
max.iter=5,
min.sample=200,
est.delta=.05,mc.step=1.5,df=10
)
fit$coef #MODEL FIT
sqrt(diag(fit$var$coef)) #STANDARD ERROR
sqrt(diag(fit$vcov)) #ESTIMATED FRAILTY STANDARD DEVIATION
###SEPARATION OF STUDY-LEVEL AND PATIENT-LEVEL COVARIATE
ipd.data$x.bar <- rep(tapply(ipd.data$x,ipd.data$group,mean),table(ipd.data$group))
ipd.data$x.c <- ipd.data$x-ipd.data$x.bar
meta.data$x.bar <- meta.data$x
fit <- coxmeta.mixed(
Surv(time,event)~trt+x.c+x.bar,surv~log(time)+trt+x.bar,~(1|group),
ipd.data,
meta.data,
ipd.groups=8,meta.groups=2,
meta.data$sigma2,
meta.data$sub.group,
max.iter=5,
min.sample=200,
est.delta=.05,mc.step=1.5,df=10
)
fit$coef #MODEL FIT
sqrt(diag(fit$var$coef)) #STANDARD ERROR
sqrt(diag(fit$vcov)) #ESTIMATED FRAILTY STANDARD DEVIATION
Run the code above in your browser using DataLab