Usage
ipfKnn(train, test, k = 3, method = "euclidean", norm = 2, sd = 5,
epsilon = 0.001, alpha = 1, threshold = 20, FUN = NULL, ...)
Arguments
train
a data frame containing the RSSI vectors of the training set
test
a data frame containing the RSSI vectors of the test set
k
the k parameter for knn algorithm (number of nearest neighbors)
method
the method to compute the distance between the RSSI vectors:
'euclidean', 'manhattan', 'norm', 'LGD' or 'PLGD'
norm
parameter for the 'norm' method
sd
parameter for 'LGD' and 'PLGD' methods
epsilon
parameter for 'LGD' and 'PLGD' methods
alpha
parameter for 'PLGD' method
threshold
parameter for 'PLGD' method
FUN
an alternative function provided to compute the distance.
This function must return a matrix of dimensions:
nrow(test) x nrow(train), containing the distances from
test observations to train observations
...
additional parameters for provided function FUN