a data frame containing the fingerprint vectors of the training set
train_pos
a data frame containing the positions of the training set observations
k
the k parameter for knn algorithm (number of nearest neighbors)
method
the method to compute the distance between the RSSI vectors:
'euclidean', 'manhattan', 'norm', 'LGD' or 'PLGD'
weights
the algorithm to compute the weights: 'distance' or 'uniform'
norm
parameter for the 'norm' method
sd
parameter for 'LGD' and 'PLGD' methods
epsilon
parameter for 'LGD' and 'PLGD' methods
alpha
parameter for 'PLGD' method
threshold
parameter for 'PLGD' method
FUN
an alternative function provided to compute the distance.
This function must return a matrix of dimensions:
nrow(test) x nrow(train), containing the distances from
test observations to train observations. The two first parameters
taken by the function must be train and test
...
additional parameters for provided function FUN
Value
An S3 object of class ipfModel, with the following properties:
params -> a list with the parameters passed to the function
data -> a list with the fingerprints and locations