ipriorMod
objects.Accessor functions for ipriorMod
objects.
get_intercept(object)get_y(object)
get_size(object, units = "kB", standard = "SI")
get_hyp(object)
get_lambda(object)
get_psi(object)
get_lengthscale(object)
get_hurst(object)
get_offset(object)
get_degree(object)
get_se(object)
get_kernels(object)
get_kern_matrix(object, theta = NULL, newdata)
get_prederror(object, error.type = c("RMSE", "MSE"))
get_estl(object)
get_method(object)
get_convergence(object)
get_niter(object)
get_time(object)
get_theta(object)
An ipriorMod
object.
Units for object size.
Standard for object size.
(Optional) Value of hyperparameters to evaluate the kernel matrix.
(Optional) If not supplied, then a square, symmetric kernel matrix is returned using the data as input points. Otherwise, the kernel matrix is evaluated with respect to this set of data as well. It must be a list of vectors/matrices with similar dimensions to the original data.
(Optional) Report the mean squared error of prediction
("MSE"
), or the root mean squared error of prediction
("RMSE"
)
get_intercept()
: Obtain the intercept.
get_y()
: Obtain the response variables.
get_size()
: Obtain the object size of the I-prior model.
get_hyp()
: Obtain the hyerparameters of the model (both estimated and fixed ones).
get_lambda()
: Obtain the scale parameters used.
get_psi()
: Obtain the error precision.
get_lengthscale()
: Obtain the lengthscale for the SE kernels used.
get_hurst()
: Obtain the Hurst coefficient of the fBm kernels used.
get_offset()
: Obtain the offset parameters for the polynomial kernels used.
get_degree()
: Obtain the degree of the polynomial kernels used.
get_se()
: Obtain the standard errors of the estimated hyperparameters.
get_kernels()
: Obtain the kernels used.
get_kern_matrix()
: Obtain the kernel matrix of the I-prior model.
get_prederror()
: Obtain the training mean squared error.
get_estl()
: Obtain information on which hyperparameters were
estimated and which were fixed.
get_method()
: Obtain the estimation method used.
get_convergence()
: Obtain the convergence information.
get_niter()
: Obtain the number of iterations performed.
get_time()
: Obtain the time taken to complete the estimation
procedure.
get_theta()
: Extract the theta value at convergence. Note that this
is on an unrestricted scale (see the vignette for details).