Learn R Programming

ipsecr (version 1.4.4)

predict.ipsecr: SECR Model Predictions

Description

Evaluate a spatially explicit capture--recapture model. That is, compute the `real' parameters corresponding to the `beta' parameters of a fitted model for arbitrary levels of any variables in the linear predictor.

Usage

# S3 method for ipsecr
predict(object, newdata = NULL, type = c("response", "link"), 
    se.fit = TRUE, alpha = 0.05, savenew = FALSE, ...)

Value

When se.fit = FALSE, a dataframe identical to newdata except for the addition of one column for each `real' parameter. Otherwise, a list with one component for each row in newdata. Each component is a dataframe with one row for each `real' parameter (density, g0, sigma, b) and columns as below

linklink function
estimateestimate of real parameter
SE.estimatestandard error of the estimate
lcllower 100(1--alpha)% confidence limit
uclupper 100(1--alpha)% confidence limit

When newdata has only one row, the structure of the list is `dissolved' and the return value is one data frame.

For detectpar, a list with the estimated values of detection parameters (e.g., g0 and sigma if detectfn = "halfnormal"). In the case of multi-session data the result is a list of lists (one list per session).

Arguments

object

ipsecr object output from ipsecr.fit

newdata

optional dataframe of values at which to evaluate model

type

character; type of prediction required. The default ("response") provides estimates of the `real' parameters.

se.fit

logical for whether output should include SE and confidence intervals

alpha

alpha level for confidence intervals

savenew

logical for whether newdata should be saved

...

other arguments passed to newdata

Details

The variables in the various linear predictors are described in secr-models.pdf and listed for the particular model in the vars component of object.

Optional newdata should be a dataframe with a column for each of the variables in the model (see `vars' component of object). If newdata is missing then a dataframe is constructed automatically.

Default newdata are for a naive animal on the first occasion; numeric covariates are set to zero and factor covariates to their base (first) level. The argument `all.levels' may be passed to newdata; if TRUE then the default newdata includes all factor levels.

realnames may be used to select a subset of parameters.

Standard errors for parameters on the response (real) scale are by the delta method (Lebreton et al. 1992), and confidence intervals are backtransformed from the link scale.

The value of newdata is optionally saved as an attribute.

References

Lebreton, J.-D., Burnham, K. P., Clobert, J. and Anderson, D. R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62, 67--118.

See Also

ipsecr.fit, predictDsurface

Examples

Run this code

predict (ipsecrdemo)

Run the code above in your browser using DataLab