Learn R Programming

ipsfs (version 1.0.0)

simSGFDK3: SFS similarity measure simSGFDK3

Description

SFS similarity measure values using simSGFDK3 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

Usage

simSGFDK3(ma, na, mb, nb, ia, ib, k)

Arguments

ma

SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function

na

SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function

mb

SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function

nb

SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function

ia

SFS indeterminacy membership values for the data set x

ib

SFS indeterminacy membership values for the data set y

k

A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications<U+00A0>of Artificial Intelligence, 94:103837, 2020.

Examples

Run this code
# NOT RUN {
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simSGFDK3(ma,na,mb,nb,ia,ib,k)
#[1] 0.5433799 0.5440421 0.8018367 0.8018367
# }

Run the code above in your browser using DataLab