
Last chance! 50% off unlimited learning
Sale ends in
PFS similarity measure values using simWW6 computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
simWW6(ma, na, mb, nb, ha, hb, k)
PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
PFS hesitancy values for the data set x
PFS hesitancy values for the data set y
A constant value, considered as 1
The PFS similarity values of data set y with data set x
G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.
# NOT RUN {
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemPFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemPFS(mb,nb)
k<-1
simWW6(ma,na,mb,nb,ha,hb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755
# }
Run the code above in your browser using DataLab