
Last chance! 50% off unlimited learning
Sale ends in
SFS similarity measure values using simWWLWW5 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.
simWWLWW5(ma, na, mb, nb, ia, ib, ra, rb, k)
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
SFS indeterminacy membership values for the data set x
SFS indeterminacy membership values for the data set y
SFS refusal membership values for the data set x
SFS refusal membership values for the data set y
A constant value, considered as 1
The SFS similarity values of data set y with data set x
G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
# NOT RUN {
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simWWLWW5(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755
# }
Run the code above in your browser using DataLab