Learn R Programming

ipw (version 1.2.1)

timedat: HIV: TB and Survival (Longitudinal Measurements)

Description

Simulated dataset. Time varying CD4 measurements of 386 HIV positive individuals. Time of first active tuberculosis, time of death and individual end time of the patients are included in dataset basdat.

Usage

data(timedat)

Arguments

Format

A data frame with 6291 observations on the following 3 variables.

id

patient ID.

fuptime

follow-up time (days since HIV seroconversion).

cd4count

CD4 count measured at fuptime.

Author

Willem M. van der Wal willem@vanderwalresearch.com, Ronald B. Geskus rgeskus@oucru.org

Details

These simulated data are used together with data in basdat in a detailed causal modelling example using inverse probability weighting (IPW). See ipwtm for the example. Data were simulated using the algorithm described in Van der Wal e.a. (2009).

References

Cole, S.R. & Hernán, M.A. (2008). Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology, 168(6), 656-664.

Robins, J.M., Hernán, M.A. & Brumback, B.A. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 11, 550-560.

Van der Wal W.M. & Geskus R.B. (2011). ipw: An R Package for Inverse Probability Weighting. Journal of Statistical Software, 43(13), 1-23. tools:::Rd_expr_doi("10.18637/jss.v043.i13").

Van der Wal W.M., Prins M., Lumbreras B. & Geskus R.B. (2009). A simple G-computation algorithm to quantify the causal effect of a secondary illness on the progression of a chronic disease. Statistics in Medicine, 28(18), 2325-2337.

See Also

basdat, haartdat, ipwplot, ipwpoint, ipwtm, timedat, tstartfun.

Examples

Run this code
#See ?ipwtm for example

Run the code above in your browser using DataLab