Last chance! 50% off unlimited learning
Sale ends in
Recommends the estimated optimal second-stage treatment for a given
stage 2 history,
IQ2(object, h2)
object of type learnIQ2
vector of observed second-stage main effects corresponding to the
variables in H2
used in learnIQ2()
estimated value of the second-stage Q-function when
estimated value of the second-stage Q-function when
estimated optimal second-stage treatment for a patient
presenting with
Use the estimated optimal second-stage decision rule from
learnIQ2()
to recommend the best stage 2 treatment for a
patient presenting with history h2
. It is essential
that h2
include the same variables and ordering as
H2
. If a formula was used to fit learnIQ2()
, we
recommend checking summary(<learnIQ2 object>)
for the correct order of h2
.
Linn, K. A., Laber, E. B., Stefanski, L. A. (2015) "iqLearn: Interactive Q-Learning in R", Journal of Statistical Software, 64(1), 1--25.
Laber, E. B., Linn, K. A., and Stefanski, L. A. (2014) "Interactive model building for Q-learning", Biometrika, 101(4), 831-847.
# NOT RUN {
## load in two-stage BMI data
data (bmiData)
bmiData$A1[which (bmiData$A1=="MR")] = 1
bmiData$A1[which (bmiData$A1=="CD")] = -1
bmiData$A2[which (bmiData$A2=="MR")] = 1
bmiData$A2[which (bmiData$A2=="CD")] = -1
bmiData$A1 = as.numeric (bmiData$A1)
bmiData$A2 = as.numeric (bmiData$A2)
s1vars = bmiData[,1:4]
s2vars = bmiData[,c (1, 3, 5)]
a1 = bmiData[,7]
a2 = bmiData[,8]
## define response y to be the negative 12 month change in BMI from
## baseline
y = -(bmiData[,6] - bmiData[,4])/bmiData[,4]
fitIQ2 = learnIQ2 (y ~ gender + parent_BMI + month4_BMI +
A2*(parent_BMI + month4_BMI), data=bmiData, "A2", c("parent_BMI",
"month4_BMI"))
summary (fitIQ2)
## new patient
h2 = c (1, 30, 45)
optIQ2 = IQ2 (fitIQ2, h2)
optIQ2$q2opt
# }
Run the code above in your browser using DataLab