Learn R Programming

ir (version 0.2.1)

mutate: Mutate an ir object by adding new or replacing existing columns

Description

Mutate an ir object by adding new or replacing existing columns

Usage

mutate.ir(
  .data,
  ...,
  .keep = c("all", "used", "unused", "none"),
  .before = NULL,
  .after = NULL
)

transmute.ir(.data, ...)

Value

.data with modified columns. If the spectra column is dropped or invalidated (see ir_new_ir()), the ir class is dropped, else the object is of class ir.

Arguments

.data

An object of class ir.

...

<data-masking> Name-value pairs. The name gives the name of the column in the output.

The value can be:

  • A vector of length 1, which will be recycled to the correct length.

  • A vector the same length as the current group (or the whole data frame if ungrouped).

  • NULL, to remove the column.

  • A data frame or tibble, to create multiple columns in the output.

.keep

[Experimental] Control which columns from .data are retained in the output. Grouping columns and columns created by ... are always kept.

  • "all" retains all columns from .data. This is the default.

  • "used" retains only the columns used in ... to create new columns. This is useful for checking your work, as it displays inputs and outputs side-by-side.

  • "unused" retains only the columns not used in ... to create new columns. This is useful if you generate new columns, but no longer need the columns used to generate them.

  • "none" doesn't retain any extra columns from .data. Only the grouping variables and columns created by ... are kept.

.before, .after

[Experimental] <tidy-select> Optionally, control where new columns should appear (the default is to add to the right hand side). See relocate() for more details.

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(), group_by, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(), select.ir(), separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

Run this code
## mutate
dplyr::mutate(ir_sample_data, hkl = klason_lignin + holocellulose)


## transmute
dplyr::transmute(ir_sample_data, hkl = klason_lignin + holocellulose)


Run the code above in your browser using DataLab