# \donttest{
# logistic boosting
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
dtrain <- with(agaricus.train, xgboost::xgb.DMatrix(data, label = label))
dtest <- with(agaricus.test, xgboost::xgb.DMatrix(data, label = label))
watchlist <- list(train = dtrain, eval = dtest)
# A simple irb.train example:
param <- list(max_depth = 2, eta = 1, nthread = 2,
objective = "binary:logitraw", eval_metric = "auc")
bst <- xgboost::xgb.train(params=param, data=dtrain, nrounds = 2,
watchlist=watchlist, verbose=2)
bst <- irb.train(params=param, data=dtrain, nrounds = 2)
summary(bst$weight_update)
# a bug in xgboost::xgb.train
#bst <- irb.train(params=param, data=dtrain, nrounds = 2,
# watchlist=watchlist, trace=TRUE, verbose=2)
# time-to-event analysis
X <- matrix(1:5, ncol=1)
# Associate ranged labels with the data matrix.
# This example shows each kind of censored labels.
# uncensored right left interval
y_lower = c(10, 15, -Inf, 30, 100)
y_upper = c(Inf, Inf, 20, 50, Inf)
dtrain <- xgboost::xgb.DMatrix(data=X, label_lower_bound=y_lower,
label_upper_bound=y_upper)
param <- list(objective="survival:aft", aft_loss_distribution="normal",
aft_loss_distribution_scale=1, max_depth=3, min_child_weight=0)
watchlist <- list(train = dtrain)
bst <- xgboost::xgb.train(params=param, data=dtrain, nrounds=15,
watchlist=watchlist)
predict(bst, dtrain)
bst_cc <- irb.train(params=param, data=dtrain, nrounds=15, cfun="hcave",
s=1.5, trace=TRUE, verbose=0)
bst_cc$weight_update
# }
Run the code above in your browser using DataLab