ip <- generate_ip(model = sample(c("GPCM", "2PL"), 20, TRUE))
n_examinee <- 100
true_theta <- rnorm(n_examinee)
resp_set <- generate_resp_set(ip = ip, theta = true_theta, prop_missing = .2)
theta_est <- est_ability(resp = resp_set, ip = ip, method = "eap")
se <- theta_est$se
theta_est <- theta_est$est
raw_score <- est_ability(resp = resp_set, method = "sum_score")$est
# Cut score
theta_cs <- c(-1, 0, 1.5)
raw_cs <- round(rsss(ip = ip, scale_score = theta_cs))
# Rudner (2000, 2005) based indices:
classification_indices(method = "rudner", theta = theta_est, se = se,
theta_cs = theta_cs)
# Guo (2006) based indices:
classification_indices(method = "guo", ip = ip, resp = resp_set,
theta = theta_est, theta_cs = theta_cs)
# Recursive method based indices:
classification_indices(method = "recursive", ip = ip, theta = theta_est,
theta_cs = theta_cs)
# Use raw score cut scores with recursive method
classification_indices(method = "recursive", ip = ip, theta = theta_est,
raw_cs = raw_cs)
Run the code above in your browser using DataLab