######### Example 1 #########
# Hypothetical data from Sim and Wright (2005), Table 1
# "Diagnostic Assessments of Relevance of Lateral Shift by 2 Clinicians"
dtf <- data.frame(c1 = c(rep("Relevant", 22), rep("Relevant", 2),
rep("Not Relevant", 4), rep("Not Relevant", 11)),
c2 = c(rep("Relevant", 22), rep("Not Relevant", 2),
rep("Relevant", 4), rep("Not Relevant", 11)))
kappa_coef(dtf)
######### Example 2 #########
# Hypothetical data from Sim and Wright (2005), p.260, Table 2
pain_raw <- data.frame(t1 = c(rep("No Pain", 15 + 3 + 1 + 1),
rep("Mild Pain", 4 + 18 + 3 + 2),
rep("Moderate Pain", 4 + 5 + 16 + 4),
rep("Severe Pain", 1 + 2 + 4 + 17)),
t2 = c(rep("No Pain", 15), rep("Mild Pain", 3),
rep("Moderate Pain", 1), rep("Severe Pain", 1),
rep("No Pain", 4), rep("Mild Pain", 18),
rep("Moderate Pain", 3), rep("Severe Pain", 2),
rep("No Pain", 4), rep("Mild Pain", 5),
rep("Moderate Pain", 16), rep("Severe Pain", 4),
rep("No Pain", 1), rep("Mild Pain", 2),
rep("Moderate Pain", 4), rep("Severe Pain", 17))
)
# Since data is ordinal, convert columns to ordinal factors:
ordered_levels <- c("No Pain", "Mild Pain", "Moderate Pain", "Severe Pain")
pain_ordered <- data.frame(
t1 = factor(pain_raw$t1, levels = ordered_levels, ordered = TRUE),
t2 = factor(pain_raw$t2, levels = ordered_levels, ordered = TRUE))
table(pain_ordered)
# Unweighted Kappa Coefficient
kappa_coef(pain_ordered)
# Kappa Coefficient with linear weights
kappa_coef(pain_ordered, weights = "linear")
# Kappa Coefficient with quadratic weights
kappa_coef(pain_ordered, weights = "quadratic")
Run the code above in your browser using DataLab