## GENERATION OF VECTORS OF RESPONSE
# NOTE THE USUAL PARAMETRIZATION OF THE ITEM DISCRIMINATION,
# THE VALUE OF THE PERSONNAL FLUCTUATION FIXED AT 0,
# AND THE VALUE OF THE PERSONNAL PSEUDO-GUESSING FIXED AT 0.30.
# IT COULD BE TYPICAL OF PLAGIARISM BEHAVIOR.
nSubjects <- 1
nItems <- 40
a <- rep(1.702,nItems); b <- seq(-5,5,length=nItems)
c <- rep(0,nItems); d <- rep(1,nItems)
theta <- seq(-2,-2,length=nSubjects)
S <- runif(n=nSubjects,min=0.0,max=0.0)
C <- runif(n=nSubjects,min=0.3,max=0.3)
D <- runif(n=nSubjects,min=0.0,max=0.0)
rep <- 100
set.seed(seed = 10)
X <- ggrm4pl(n=nItems, rep=rep,
theta=theta, S=S, C=C, D=D,
s=1/a, b=b,c=c,d=d)
## Estimation of the model integrating the T and the C parameters
model <- "C"
test <- m4plPersonParameters(x=X, b=b, s=1/a, c=c, d=d, m=0, model=model,
prior="uniform", more=TRUE)
## Summary of the preceding model (report and first 5 subjects)
essai <- m4plSummary(X=test, out="report")
# Rounding the result of the list to two decimals
lapply(essai, round, 2)
essai <- m4plSummary(X=test, out="result")[1:5,]
lapply(essai, round, 2)
essai <- m4plSummary(X=test, out="report", thetaInitial=theta)
lapply(essai, round, 2)
essai <- m4plSummary(X=test, out="result", thetaInitial=theta)[1:5,]
lapply(essai, round, 2)
## Results directly from m4plMoreSummary()
essai <- m4plMoreSummary(x=test, out="report")
lapply(essai, round, 2)
essai <- m4plMoreSummary(x=test, out="result")[1:5,]
round(essai, 2)
## To obtain more general statistics on the result report
essai <- m4plMoreSummary(x=test, out="result")
m4plNoMoreSummary(essai)
summary(m4plMoreSummary(x=test, out="result"))
Run the code above in your browser using DataLab