## ....................................................................
# Generation of response patterns (0,1) from r4pl() for N subjects (default value
# of N = 10)
# Generation of a response (0,1) from rm4pl for N subjects
grm4pl(theta=0)
grm4pl(N=5, theta=c(-4,4), c=0)
# Generation of n m4pl response patterns (0,1) for [rep * length(theta)] subjects
# The subject number ia equal to [rep * length(theta)]
# a,b,c et d are item parameters vectors
nitems <- n <- 7; N <- 1
s <- rep(0,nitems); b <- seq(-4,4,length=nitems); c <- rep(0,nitems)
d <- rep(1,nitems)
theta <- seq(-4,4,length=5)
x <- ggrm4pl(n=nitems, rep=N, theta=theta,s=s,b=b,c=c,d=d)
x
# TO BE REWORKED - Probability of a response pattern and test caracteristic curve
# (TCC)
nItems <- n <- 7; N <- 1
s <- rep(0,nItems); b <- seq(-4,4,length=nItems)
c <- rep(0,nItems); d <- rep(1,nItems)
theta <- seq(-4,4,length=5); S <- rep(1/1.702,length(theta));
C <- rep(0.3,length(theta)); D <- rep(0,length(theta))
x <- ggrm4pl(n=nItems, rep=N, theta=theta, S=S, C=C, D=D, s=s, b=b, c=c, d=d)
x
res <- pggrm4pl(x=x, rep=N, theta=theta, S=1/1.702, C=0.3, D=0, s=s, c=c, d=d,
TCC=TRUE)
res
res <- pggrm4pl(x=x, rep=N, theta=rep(2,length(theta)), S=1/1.702, C=0, D=0,
s=s, c=c, d=d, TCC=FALSE)
res
pggrm4pl(theta=3)
pggrm4pl(n=10, theta=seq(-4,4,length=5), x=ggrm4pl(rep=1), TCC=TRUE)
## ....................................................................
Run the code above in your browser using DataLab