## Not run:
# ## GENERATION OF VECTORS OF RESPONSES
# # NOTE THE USUAL PARAMETRIZATION OF THE ITEM DISCRIMINATION,
# # THE VALUE OF THE PERSONNAL FLUCTUATION FIXED AT 0,
# # AND THE VALUE OF THE PERSONNAL PSEUDO-GUESSING FIXED AT 0.30.
# # IT COULD BE TYPICAL OF PLAGIARISM BEHAVIOR.
# nItems <- 40
# a <- rep(1.702,nItems); b <- seq(-5,5,length=nItems)
# c <- rep(0,nItems); d <- rep(1,nItems)
# nSubjects <- 1; rep <- 100
# theta <- seq(-1,-1,length=nSubjects)
# S <- runif(n=nSubjects,min=0.0,max=0.0)
# C <- runif(n=nSubjects,min=0.3,max=0.3)
# D <- runif(n=nSubjects,min=0.0,max=0.0)
# set.seed(seed = 100)
# X <- ggrm4pl(n=nItems, rep=rep,
# theta=theta, S=S, C=C, D=D,
# s=1/a, b=b,c=c,d=d)
#
# ## Results for each subjects for each models
# essai <- m4plModelShow(X, b=b, s=1/a, c=c, d=d, m=0, prior="uniform")
#
# ## Mean results for some speficic models
# median(essai[which(essai$MODEL == "TSCD") ,]$SeT, na.rm=TRUE)
# mean( essai[which(essai$MODEL == "TSCD") ,]$SeT, na.rm=TRUE)
# mean( essai[which(essai$MODEL == "TD") ,]$SeT, na.rm=TRUE)
# sd( essai[which(essai$MODEL == "TD") ,]$T, na.rm=TRUE)
#
# ## Result for each models for the first subject
# essai[which(essai$ID == 1) ,]
# max(essai[which(essai$ID == 1) ,]$LL)
#
# ## Difference between the estimated values with the T and TSCD models for the
# ## first subject
# essai[which(essai$ID == 1 & essai$MODEL == "T"),]$T
# - essai[which(essai$ID == 1 & essai$MODEL == "TSCD"),]$T
# ## End(Not run)
Run the code above in your browser using DataLab