## Not run:
# ## GENERATION OF VECTORS OF RESPONSE
# # NOTE THE USUAL PARAMETRIZATION OF THE ITEM DISCRIMINATION,
# # THE VALUE OF THE PERSONNAL FLUCTUATION FIXED AT 0,
# # AND THE VALUE OF THE PERSONNAL PSEUDO-GUESSING FIXED AT 0.30.
# # IT COULD BE TYPICAL OF PLAGIARISM BEHAVIOR.
# nItems <- 40
# a <- rep(1.702,nItems); b <- seq(-5,5,length=nItems)
# c <- rep(0,nItems); d <- rep(1,nItems)
# nSubjects <- 1; rep <- 100
# theta <- seq(-1,-1,length=nSubjects)
# S <- runif(n=nSubjects,min=0.0,max=0.0)
# C <- runif(n=nSubjects,min=0.3,max=0.3)
# D <- runif(n=nSubjects,min=0,max=0)
# set.seed(seed = 100)
# X <- ggrm4pl(n=nItems, rep=rep,
# theta=theta, S=S, C=C, D=D,
# s=1/a, b=b,c=c,d=d)
#
# ## Results for each subjects for each models
# essai <- m4plModelShow(X, b=b, s=1/a, c=c, d=d, m=0, prior="uniform")
#
# ## Means of choosen variables from m4plModleShow previous call
# round(meanModels(essai, statistic=c("LL","BIC","T","C")), 2)
#
# ## Which model(s) are the best for each subject (LL criteria)
# res <- modelChoose(essai, criteria = "LL", tol = 0.2); res
#
# ## Which model(s) are the best for each of the first 20 subjects (BIC criteria)
# res <- modelChoose(essai[which(essai$ID < 20) ,], criteria="BIC"); res
#
# ## A look at the 15th subject parameters estimation for each models
# essai[which(essai$ID == 15) ,]
#
# ## Add the logical critLL variable to the data frame
# criteria <- "LL"
# res1 <- modelChooseAdd(essai, criteria=criteria)
# # Create a charcater string composed from "crit" and criteria
# crit <- paste("crit",criteria,sep="")
# # To Show only the lines where the models is choosen according to critLL
# res2 <- res1[which(res1[crit] == TRUE),]; mean(res2$T);sd(res2$T,na.rm=TRUE);res2
# # Give the mean for choosen variables from m4plModelShow
# meanModels(essai, statistic=c("LL","BIC","T","SeT","S","C","D"))
# # Tabulate only the choosen models
# table(res2$MODEL)
# # Show the information for the subject for which the model TSCD was choosen
# res2[which(res2$MODEL == "TSCD") ,]
# # Show only the results for the 5th subject, the with the TSCD model choosen
# res1[which(res1$ID == 5) ,]
# # Same, but without critLL
# essai[which(essai$ID == 5) ,]
#
# ## Simulation whith cheating
# # High proficiency students responding at random to 20
# # easiest ones)
# XHProficiency <- X
# pourcHasard <- 0.20; nHasard <- abs(dim(X)[2]*pourcHasard)
# XHProficiency[,1:nHasard] <- rbinom(dim(X)[1]*nHasard, 1, 0.5)
# XHProficiency <- m4plModelShow(XHProficiency, b=b, s=1/a, c=c, d=d,
# m=0, prior="uniform")
# XHProficiency <- modelChooseAdd(XHProficiency, criteria=criteria)
# XHProficiency <- XHProficiency[which(XHProficiency$critLL == TRUE),]
# mean(XHProficiency$T);sd(XHProficiency$T,na.rm=TRUE);XHProficiency[1:10,]
# meanModels(XHProficiency, statistic=c("LL","BIC","T","SeT","S","C","D"))
# table(XHProficiency$MODEL)
#
# # Low proficiency students responding at random to 20
# # (more difficult ones)
# XLProficiency <- X
# pourcHasard <- 0.20
# nHasard <- abs(dim(X)[2]*pourcHasard)
# XLProficiency[,(nItems-nHasard+1):nItems] <- rbinom(dim(X)[1]*nHasard, 1, 0.5)
# XLProficiency <- m4plModelShow(XLProficiency, b=b,
# s=1/a, c=c, d=d, m=0, prior="uniform")
# XLProficiency <- modelChooseAdd(XLProficiency,
# criteria=criteria)
# XLProficiency <- XLProficiency[which(XLProficiency$critLL == TRUE),]
# mean(XLProficiency$T);sd(XLProficiency$T,na.rm=TRUE);XLProficiency[1:10,]
# meanModels(XLProficiency, statistic=c("LL","BIC","T","SeT","S","C","D"))
# table(XLProficiency$MODEL)
#
# # High proficiency students giving incorrect responses to 20
# # (easiest ones)
# XHProficiency <- X
# pourcCheat <- 0.20; nCheat <- abs(dim(X)[2]*pourcCheat)
# XHProficiency[,1:nCheat] <- rep(0, dim(X)[1]*dim(X)[2]*pourcCheat)
# XHProficiency <- m4plModelShow(XHProficiency, b=b, s=1/a, c=c, d=d,
# m=0, prior="uniform")
# XHProficiency <- modelChooseAdd(XHProficiency, criteria=criteria)
# XHProficiency <- XHProficiency[which(XHProficiency$critLL == TRUE),]
# mean(XHProficiency$T);sd(XHProficiency$T,na.rm=TRUE);XHProficiency[1:10,]
# meanModels(XHProficiency, statistic=c("LL","BIC","T","SeT","S","C","D"))
# table(XHProficiency$MODEL)
#
# # Low proficiency students giving correct responses to 20
# # (more difficult ones)
# XLProficiency <- X
# pourcCheat <- 0.20
# nCheat <- abs(dim(X)[2]*pourcCheat);
# XLProficiency[,(nItems-nCheat+1):nItems] <- rep(1, dim(X)[1]*dim(X)[2]*pourcCheat)
# XLProficiency <- m4plModelShow(XLProficiency, b=b,
# s=1/a, c=c, d=d, m=0, prior="uniform")
# XLProficiency <- modelChooseAdd(XLProficiency,
# criteria=criteria)
# XLProficiency <- XLProficiency[which(XLProficiency$critLL == TRUE),]
# mean(XLProficiency$T);sd(XLProficiency$T,na.rm=TRUE);XLProficiency[1:10,]
# meanModels(XLProficiency, statistic=c("LL","BIC","T","SeT","S","C","D"))
# table(XLProficiency$MODEL)
# ## End(Not run)
Run the code above in your browser using DataLab