Learn R Programming

islasso (version 1.6.0)

islasso-internal: Internal Functions

Description

Internal islasso functions.

Usage

qqNorm(x, probs = seq(0.005, 0.995, length.out = 200), centre = FALSE,
  scale = FALSE, leg = TRUE, mean = 0, sd = 1, dF = FALSE, ylab = NULL,
  color = "black", ...)
modelX(n, p, rho=.5, scale.data=TRUE)
lminfl(mod, tol = 1e-8)
is.influence(model, do.coef = TRUE)
islasso.diag(glmfit)
islasso.diag.plots(glmfit, glmdiag = islasso.diag(glmfit),
  subset = NULL, iden = FALSE, labels = NULL, ret = FALSE)
predislasso(object, newdata, type = c("response", "terms"),
  terms = NULL, na.action = na.pass, ...)

.checkinput(X, y, family, alpha, intercept, weights, offset, unpenalized, control) .startpoint(X, y, lambda, alpha, weights, offset, mustart, family, intercept, setting) .islasso(prep, start, Lambda, fam, link)

checkinput.islasso.path(X, y, family, lambda, nlambda, lambda.min.ratio, alpha, intercept, weights, offset, unpenalized, control) startpoint.islasso.path(X, y, lambda, alpha, weights, offset, mustart, family, intercept, setting) islasso.path.fit.glm(prep, start, lambda, fam, link)

interpolate(y1, y2, x1, x2, x.new) create_coef_plot(coef1, loglambda, label, id.best, gof, dots, active, unactive, legend, nlambda) create_se_plot(se1, coef1, loglambda, label, id.best, gof, dots, active, unactive, legend, nlambda) create_weight_plot(weight1, coef1, loglambda, label, id.best, gof, dots, active, unactive, legend, nlambda) calculate_gradient(object, lambda, nlambda, intercept) create_gradient_plot(grad, coef1, lambda, label, id.best, gof, dots, active, unactive, legend, nlambda) create_gof_plot(object, loglambda, id.best, gof, dots)

makeHyp(cnames, hypothesis, rhs = NULL) printHyp(L, b, nms) cislasso(object, a, ci) ci.fitted.islasso(object, newx, ci = NULL, type.ci = "wald", conf.level=.95, only.ci = FALSE)

Arguments

Author

Gianluca Sottile (gianluca.sottile@unipa.it)

Details

These functions are not intended for users.