n <- 100; p <- 30; p1 <- 10 # number of nonzero coefficients
beta.veri <- sort(round(c(seq(.5, 3, length.out = p1/2),
seq(-1, -2, length.out = p1/2)), 2))
beta <- c(beta.veri, rep(0, p - p1))
sim1 <- simulXy(n = n, p = p, beta = beta, seed = 1, family = gaussian())
o <- islasso.path(y ~ ., data = sim1$data,
family = gaussian(), nlambda = 30L)
o
summary(o, lambda = 10, pval = 0.05)
coef(o, lambda = 10)
fitted(o, lambda = 10)
predict(o, type = "response", lambda = 10)
plot(o, yvar = "coef")
residuals(o, lambda = 10)
deviance(o, lambda = 10)
logLik(o, lambda = 10)
GoF.islasso.path(o)
if (FALSE) {
##### binomial ######
beta <- c(1, 1, 1, rep(0, p - 3))
sim2 <- simulXy(n = n, p = p, beta = beta, interc = 1, seed = 1,
size = 100, family = binomial())
o2 <- islasso.path(cbind(y.success, y.failure) ~ ., data = sim2$data,
family = binomial(), lambda = seq(0.1, 100, l = 50L))
temp <- GoF.islasso.path(o2)
summary(o2, pval = 0.05, lambda = temp$lambda.min["BIC"])
##### poisson ######
beta <- c(1, 1, 1, rep(0, p - 3))
sim3 <- simulXy(n = n, p = p, beta = beta, interc = 1, seed = 1,
family = poisson())
o3 <- islasso.path(y ~ ., data = sim3$data, family = poisson(), nlambda = 30L)
temp <- GoF.islasso.path(o3)
summary(o3, pval = 0.05, lambda = temp$lambda.min["BIC"])
##### Gamma ######
beta <- c(1, 1, 1, rep(0, p - 3))
sim4 <- simulXy(n = n, p = p, beta = beta, interc = -1, seed = 1,
family = Gamma(link = "log"))
o4 <- islasso.path(y ~ ., data = sim4$data, family = Gamma(link = "log"),
nlambda = 30L)
temp <- GoF.islasso.path(o4)
summary(o4, pval = .05, lambda = temp$lambda.min["BIC"])
}
Run the code above in your browser using DataLab