The ``mitdr()'' function implements transformation method for multivariate regression
mitdr(X,Y,d,m,method="FT-IRE",
lambda=NA,noB = 5,noC = 20,noW = 2,sparse.cov = FALSE, x.scale = FALSE)The function output is a p-by-d matrix and the estimated covariance matrix.
An estimator for the SDR subspace.
Estimated covariance matrix only from the ``admmft'' method and a null matrix for other methods.
Design matrix with dimension n-by-p
Response matrix with dimension n-by-q
Structure dimension (default 2).
The number of omegas, i.e., 2m number of integral transforms
(default ``FT-IRE'') Specify the method of dimension reduction. Other possible choices are ``FT-DIRE'',``FT-SIRE'',``FT-RIRE'', ``FT-DRIRE'', and ``admmft''.
Tuning Parameter for ``admmft'' method. If it is not provided, the optimal lambda value is chosen by cross-validation of the Fourier transformation method.
(default 5) Iterations for updating B. Only required for the ``admmft'' method.
(default 20) Iterations for updating C. Only required for the ``admmft'' method.
(default 2) Iterations for updating weight. Only required for the ``admmft'' method.
(default FALSE) If TRUE, calculates the soft-threshold matrix. Only required for the ``admmft'' method.
(default FALSE) If TRUE, standardizes each variable for the soft-threshold matrix. Only required for the ``admmft'' method.
The ``mitdr()'' function selects the sufficient variables using Fourier transformation sparse inverse regression estimators.
Weng, J. (2022), Fourier Transform Sparse Inverse Regression Estimators for Sufficient Variable Selection, Computational Statistics & Data Analysis, 168, 107380.
Weng, J., & Yin, X. (2022). A Minimum Discrepancy Approach with Fourier Transform in Sufficient Dimension Reduction. Statistica Sinica, 32.
if (FALSE) {
data(prostate)
Y <- as.matrix(prostate[, 9])
X <- as.matrix(prostate[, -9])
fit.ftire <- mitdr(X, Y, d = 1, method = "FT-DRIRE")
fit.ftire$Beta_hat
}
Run the code above in your browser using DataLab