Learn R Programming

itsdm (version 0.2.2)

plot.IndependentResponse: Show independent response curves.

Description

Plot independent response curves using ggplot2 by optionally set target variable(s).

Usage

# S3 method for IndependentResponse
plot(x, target_var = NA, smooth_span = 0.3, ...)

Value

ggplot2 figure of response curves

Arguments

x

(IndependentResponse) The independent response curve object to plot. It could be the return of function independent_response.

target_var

(vector of character) The target variable to plot. It could be NA. If it is NA, all variables will be plotted.

smooth_span

(numeric) The span value for smooth fit in ggplot2. When it is 0, no smooth applied. The default is 0.3.

...

Not used.

See Also

independent_response

Examples

Run this code
# \donttest{
# Using a pseudo presence-only occurrence dataset of
# virtual species provided in this package
library(dplyr)
library(sf)
library(stars)
library(itsdm)

# Prepare data
data("occ_virtual_species")
obs_df <- occ_virtual_species %>% filter(usage == "train")
eval_df <- occ_virtual_species %>% filter(usage == "eval")
x_col <- "x"
y_col <- "y"
obs_col <- "observation"

# Format the observations
obs_train_eval <- format_observation(
  obs_df = obs_df, eval_df = eval_df,
  x_col = x_col, y_col = y_col, obs_col = obs_col,
  obs_type = "presence_only")

env_vars <- system.file(
  'extdata/bioclim_tanzania_10min.tif',
  package = 'itsdm') %>% read_stars() %>%
  slice('band', c(1, 5, 12, 16))

# With imperfect_presence mode,
mod <- isotree_po(
  obs_mode = "imperfect_presence",
  obs = obs_train_eval$obs,
  obs_ind_eval = obs_train_eval$eval,
  variables = env_vars, ntrees = 20,
  sample_size = 0.8, ndim = 2L,
  seed = 123L, response = FALSE,
  spatial_response = FALSE,
  check_variable = FALSE)

independent_responses <- independent_response(
  model = mod$model,
  var_occ = mod$vars_train,
  variables = mod$variables)
plot(independent_responses)
# }

Run the code above in your browser using DataLab